BigQueryConnector
Configuration
The required BigQueryConnector arguments are:
id:creds: the path to the Google authentication credentials. The default is the environment variableGOOGLE_APPLICATION_CREDENTIALS.
bigquery_connector = BigQueryConnector(
id="bigquery_connector_id",
creds="/example_path/creds.json"
)Under the hood, prism interacts with the BigQuery Python API to create the SQL engine. For more information, see here the Google BigQuery documentation.
execute_sql
execute_sqlYou can run queries against the BigQuery engine using the execute_sql function:
from prism.decorators import task
from prism.runtime import CurrentRun
@task()
def bigquery_task(self):
conn = CurrentRun.conn("bigquery_connector_id")
data = conn.execute_sql(
sql="SELECT * FROM table"
)Note that when return_type = None, the result will be a list of Row objects containing the query data.
Last updated