BigQueryConnector
Configuration
The required BigQueryConnector
arguments are:
id
:creds
: the path to the Google authentication credentials. The default is the environment variableGOOGLE_APPLICATION_CREDENTIALS
.
bigquery_connector = BigQueryConnector(
id="bigquery_connector_id",
creds="/example_path/creds.json"
)
Under the hood, prism interacts with the BigQuery Python API to create the SQL engine. For more information, see here the Google BigQuery documentation.
execute_sql
execute_sql
You can run queries against the BigQuery engine using the execute_sql
function:
from prism.decorators import task
from prism.runtime import CurrentRun
@task()
def bigquery_task(self):
conn = CurrentRun.conn("bigquery_connector_id")
data = conn.execute_sql(
sql="SELECT * FROM table"
)
Note that when return_type = None
, the result will be a list of Row
objects containing the query data.
Last updated